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I. The Statistics World With AroniSmartLytics™

Researchers, Scientists, Engineers, Students, Politicians,
Economists, Political Analysts, Financial Analysts, Statisticians, and
most of us the practitioners use statistics to answer questions that
require data analysis. Statistics help to describe the results of,
among others, investigations, experiments, observations. When data
about the subject or object of interest is somehow comprehensive,
data analysis using descriptive statistics is what is needed.
Unfortunately, in the world of statistics, things are not that simple.
The population of interest may not be fully observable or accessible.
Hence, the statistician will have to make inference, or in statistics
terms, appeal to inferential statistics. Inferential statistics
involve statistics tests. One of the major issues facing statistics
researchers is to choose which test to use. The choice involves first
a decision between two families of test statistics: parametric and
nonparametric. AroniSmartLytics™ intends to help beginners,
practitioners and most advanced statisticians and researchers to
navigate this tricky step in learning, research, and interpretation
and application of or action on results.

The specific module of AroniSmartLytics™ dedicated to statistic
tests offers an in-depth, user friendly and intuitive reference and
selection tool that will facilitate the task, save time, while being
rigorously thought out.

. Statistics vs. Statistical Tests

. Non-Parametric Statistical Tests

. Parametric Statistical Tests

. Non-parametric vs Parametric Statistical Tests: when

to choose one versus the other

The module follows the simple three steps:
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Statistical Parametric vs Statistical Test

Problem Nonparametric

II. Statistics

The statistical method usually follows the five steps of the
scientific method: State the problem, Formulate hypothesis,
Design experiment or survey, Make observations, Interpret
data, Draw conclusions. Statistics covers the aspects of the
collection, organization, analysis, and interpretation of data. These
aspects include the planning of data collection in terms of the
design of surveys, researches, and experiments. In order to analyze
data, hypotheses, and findings, statisticians use statistics, which
are the quantity calculated or assumed from the data, such as:
mean, proportion, median, variance, standard deviation,
moment.

To make inference, statisticians test hypotheses or
conjectures, using specific statistical tests on given “statistics”.
These tests are usually grouped into two categories: non-parametric
tests and parametric tests, hence Nonparametric and Parametric
statistics.

1. Nonparametric Statistics

Nonparametric statistics deals with techniques to analyze
data that do not belong to any particular probability distribution.
The list of key probability distributions is given in the main module
of AroniSmartLytics™.

Data that do not belong to any distribution can be analyzed
using distribution free methods, which do not rely on any
assumptions regarding a probability distribution that can describe
the data. These distribution free methods are covered in
nonparametric statistics. AroniSmartLytics™ will give the most
common and uncommon methods or statistical tests used in
nonparametric statistics.

In nonparametric statistics, the structure of the model, and
the number and nature of the parameters are flexible and not fixed
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in advance. They are determined from the data instead of being
specified a priori.

In parametric statistics, distribution parameters are assumed
in advance.

IV. Parametric Statistics

Unlike nonparametic statistics, parametric statistics assumes
that data have come from a type of probability distribution, and
only makes inference about the parameters of the distribution. The
list of key probability distributions is given in the main module of
AroniSmartLytics™.

Methods based on parametric statistics make more assumptions
than nonparametric statistics and produce estimates under specific
assumptions. If the assumptions are correct, the parametric
statistics accurately describes the research problem. Hence,
parametric statistics commonly lacks or has limited robusteness.
Usually, parametric statistics uses formulas to describe the
probability distributions, their parameters, and the statistics,
making their nature simple.

V. Nonparametric vs Parametric Statistics.

The choice between Nonparametric and parametric
statistics may be tricky and non obvious. AroniSmartLytics™
simplifies the problem. The choice of a statistics test is based on
mostly three criteria:

. Nature of the problem or goal
. Levels or Scale of Measurement and nature of the data
e Robustness

The combination of the nature of the problem and the scale of
measurement determine the family of statistical tests to use.
Robustness determines the type of the test, and ultimately the test
itself.

A. Nature of the problem.

Statistical problems may be grouped into the following nine
categories.

. Describing one group
. Comparing one group to a hypothetical value
. Comparing two unpaired groups

. Comparing two paired groups
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. Comparing three or more unmatched groups

. Comparing three or more matched groups

. Quantifying association between two variables

. Predicting value from another measured variable

. Predicting value from several measured or binomial
variables

The most basic independent group design has two groups.
These are often called Experimental and Control group. In two-
group settings, subjects or objects are randomly selected from the
population and randomly assigned each to one or the other of two
groups. Sometimes, the subjects from two different groups are
paired. Other times, there is no basis for pairing scores, and the
groups are independent. Two independent groups may or may not
have the same number of subjects.

B. Levels or Scale of Measurements or Types of Data

There are five levels of measurements: Binomial or Two
possible outcomes, Nominal or discrete unordered, Ordinal or
Discrete ranked, Numerical discrete, Numerical continuous or
ratio, and survival

C. Robusteness.

Given the nature of a problem, some tests are more robust that
others. AroniSmartLytics™ will help narrow down the range to the
smallest set of possible tests. Faced with multiple choices, by using
AroniSmartLytics™ the researcher, statistician, student, engineer
and practitioner will have it easier when selecting the most
appropriate and relevant test based on a rigorous and tested
approach.

VI. Choosing between Nonparametric and Parametric tests.

The first question that may come into mind when trying to
decide between the two types of statistical tests, that is
Nonparametric and Parametric, is whether the choice is critical. The
short answer is that it matters mostly in the following situations:
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A. Small samples

= Using nonparametric tests for small samples that are
suited for parametric tests (Gaussian populations)
may lead to diminished robusteness, hence reduced
sample power to make inference.

= Using parametric tests with small samples that are
not suited (non-Gaussian populations) may lead to
inaccurate inference, given that the central limit
theorem is no longer applicable. Probability
statements obtained from most nonparametric
statistics are usually exact probabilities, regardless
of the shape of the population distribution from
which the random sample was drawn.

= |f too small sample sizes are used, there is no
alternative to using a nonparametric test.

B. Large Samples

e Usually with large samples, it is easier. Parametric
tests with large samples from non-Gaussian
populations may be protected by the central limit
theorem. The problem is that the concept of “large
sample” may be a matter of taste, with 30 subjects
or more being commonly used a cutoff between small
and large samples.

e Corollary to this, nonparametric tests on Gaussian
populations usually deteriorate the robustness of the
test.

AroniSmartLytics™ has a clear, user-friendly module that
helps to select which parametric test to use and in what situations
nonparametric statistical tests may be appropriate. The module
clarifies the steps involved in choosing between a nonparametric and
parametric test.

Once a decision has been made to use nonparametric tests, the
nonparametric statistics module will guide in selecting the
appropriate nonparametric test.

Similarly, a function within the software will guide the user in
selecting the most suitable parametric statistical test.

In any case, by using AroniSmartLytics™ and AroniStat™,
researchers, scientists, engineers, students, politicians, economists,
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political analysts, financial Analysts, statisticians, and most
practitioners may select and examine the shapes and forms of
probability density and cumulative density functions and probability
mass and cumulative mass functions. By varying the parameter
values of the probability distributions, they may observe various
shapes and forms that will help them select the distribution of
interest. This will help in selecting the parametric tests and
consequently the appropriate distribution to use in parametric tests.
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VII.Main Nonparametric Tests.
A. Binomial Test

The Binomial Tests are appropriate for populations consisting
of only two classes. Many populations have these characteristics:
male and female, married and single, member and nonmember,
inpatient and outpatient, literate and /lliterate, etc. Such
populations are called binary or dichotomous populations.

Test/
Variable
Definition

Expected
Value
Variance

Common
Hypothesis

Small
samples

Large
Samples

Asymptotic

Distribution

Correction
for
Continuity

Power

P(X = x|p) =
p*(1 —p)t~*;
x=01 0<p <1

p

p(1—p)

Ho:p = 1/2

Ho:p = 1/2

X —ny)

Jnpq
_(X-Np)

v npq

Z

7 — (X£05)-Np
- Vmpq
X<Np use X-.5

Pr(x =1)
=1-Pr(X=0)
=]_—q

prq

Symmetry of

Binomial when

p=1/2:
PX=2x)=PX<n-—x)

pqg =p(1—q)

Z 1s approximately
normally distributed
with mean 0 and
standard deviation 1

When X<Np use X+.5 and when

Best test for dichotomous data
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B. Binomial Confidence Intervals

Binomial Confidence Intervals are used in assessing the confidence
interval for a proportion in a population with two distinct groups. The
proportion statistic is estimated from a sample of observations. The
sampling error is calculated based on the observations using a formula.
Several formulae exist. For all of them, the assumption is that the
population proportion follows a Binomial Distribution.

The methods to compute Binomial Confidence Intervals include:

. Normal approximation interval
. Wilson score interval
. Clopper-Pearson interval
. Agresti-Coull Interval
. Jeffreys interval
1. Normal approximation interval

Normal approximation intervals are the most commonly used method.
The method assumes that the a binomial distribution may be
approximated by a normal distribution, as shown in the module of
Relationships Among Key Probability Distributions of
AroniSmartLytics™.

The approximation relies on the Central limit theorem. Other
assumptions are that both the proportions of success or failure should
not be close to zero.

Test/ Concept
Definition DL ziap

p(1 - Pp) p is sample proportion of
n success in a Bernouilli trial

a is the error perecentile

z,_aisthe il =2
= 2

1 , .
nis the sample size

percentile of a standard

normal distribution

Hypothesis Testing The population proportion m, is tested as follows:
and Test Validity

p—T

M|Zgs S ———=="Z1-0p2
p( —p)
n

Other Assumptions p-—m Is know as Wald test,
and p(1 —p) hence the test is also

n know as Wald Test
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2. Wilson score interval

The Wilson interval, named after its developer, the American
Mathematical Statistician Edwin Bidwell Wilson, was proposed as an
improvement to the Normal approximation. The test is widely viewed as
closer to the true population value. The assumptions remain the same as
those for the Normal approximation.

Test/ Concept L1, \/ﬁ(l—ﬁ) 2% a2
Definition Pz i-aiz L Z1-ap2 n T an?

1
1 + ﬁzzl_“/z

. a
z, _aisthe 1—-=
15 2

percentile of a standard normal distribution
p is sample proportion of success in a Bernouilli trial
a is the error perecentile

n is the sample size

Hypothesis Testing The population proportion [, is tested as follows:
and Test Validity
p—m

7T|Za/2 S————=<7Z14p
P —p)
n
. . 1 .
Other Assumptions Pt5-2%1 0 |s_known as the
and —a Wilson test
1 —
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3. Clopper-Pearson interval

The Clopper-Pearson interval, named after the British statisticians
Egon Sharpe Pearson and C. Clopper, is also known as “Exact
Confidence Interval.” Like the Wilson Test, the Clopper-Pearson
interval is proposed as an improvement to the Normal Approximation. The
method is based on the cumulative probabilities of the binomial
distribution.

The method approximates the intervals by two binomial cumulative
mass functions: a lower bound and an upper bound.

The interval may be estimated by the Beta Inverse distribution
and the F distribution. The relationship between the Beta and F
distributions is shown in the module of Relationships Among Key
Probability Distributions of AroniSmartLytics™.

Test/ Concept {r|P[Binomial(n; ) < X] = a/2} n {w|P[Binomial(n; ) = X]| = a/2}
Definition

Hypothesis Testing The population proportion m, is tested as follows:
and Test Validity K n
n\ gk n-0 _ ny n-k —
{Z (k) pie(1 — pyp) = “/2} n {Z (k) pig(1 — pLp) = a/Z}
k=0 k=x

The population proportion, m, falls in the
range [puspys] Where:

pp 1S the confidence interval lower bound

pysg 1S the confidence interval upper bound

nis the number of trials or sample size

k is the number of successes in n trials
Other Assumptions The confidence intervals may be estimated
and by the Beta Distribution:

pys = 1 — Betalnverse (PTa,n -k, k+ 1)

11—«

pig = 1 — Betalnverse (1 — ,n—k+1, k)
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4. Agresti-Coull Interval

The Agresti-Coull Interval Approximation, named after the American
mathematical statisticians Alan Agresti and Brent A. Coull, is the
approximate binomial confidence interval that is also an improvement on
the Normal approximation. It is closely related to the Wilson estimation.

Test/ Concept
Definition

p(1-p)
7l

PEzi_qp ; Z1—§ isthe 1 —%

percentile of a standalld normal distribution

2 —
) X+z 1_% 5 ;
= an
2 7
n=n+ zzl_g , where n is the sample size
2

X is the number of successes inn trials

Hypothesis Testing The population proportion m, is tested as follows:
and Test Validity

p—m

M2y S ——=<7Z1-ap
p(1—p)
J A

Other Assumptions
and

5. Jeffreys interval

The Jeffreys interval, named after the British statistician
mathematician, geophysicist and astronomer Harold Jeffreys is based on
Bayesian statistics. It is derived from the Jeffreys prior binomial
proportion p, which is non informative objective or empirical prior
distribution parameter space that is proportional to the square root of
the determinant of the Fisher information.

For the Binomial proportion p, the Jeffreys prior is a Beta
distribution with parameters (1/2, 1/2).

The estimation process of the Jeffreys interval follows the steps:

e Step 1: observe x successes in n trials;
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e Step 2: Form the posterior probability distribution for p as a Beta

distribution with parameters (x + 1/2, n - x + 1/2);

e Step 3: For x =20 and x = n, the Jeffreys interval is estimated by
the 100(1 - a)% equal-tailed posterior probability interval, that is
the a / 2 and 1 - a / 2 quantiles of a Beta distribution with
parameters (x + 1/2, n - x + 1/2).

Estimation Considerations: Quantiles may be computed using
AroniSmartLytics probability distributions module.

To avoid estimations degradations, especially the coverage
probability tending to zero when p — 0 or 1, when x = 0, the upper
limit is calculated whereas the lower limit is set to 0, and when x = n
the lower limit is calculated, whereas the upper limit is set to 1.

C. Binomial Power Tests

Binomial Power test plays a major role in assessing the strength in
hypothesis testing. When testing hypothesis, there are two possible
decisions: rejecting or accepting the null hypothesis.

The decision to reject the hypotheses after observing the data and
calculating the statistic may not be the final step in the decision making
process. In fact, the null hypothesis is rejected when the observed
statistic falls beyond a critical value. However, even after the decision is
made further confirmation may be needed to strengthen the confidence in
the decision: is the sample size enough or is more or stronger
evidence needed.

Hence the statistical problem may be represented by the following
table:

Fail to Reject the null Type Il
hypothesis Ho GO Error R
Reject the null hypothesis Type | Correct
Ho error a
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In practice, the two types of errors are not given the same
importance or weight. The decision is biased against rejecting a true null
hypothesis. The null hypothesis should not be rejected without strong
evidence.

The researcher wants the Probability (Type | Error) = Probability
(Rejecting Ho when Ho is true) to be very small. Fortunately the
Probability (type | error), denoted by a, can be determined once the form
of the critical region is known.

At the same time, the researcher wants to avoid making the Type Il
error, which the probability of deciding not to reject Ho when Ho is false.

The Type Il error, commonly denoted by R, is a function of the
proportion of successes p, the sample size n, and the Type | error a.
Hence, the aim is to maximize the chances of not making the Type Il
error. This chance is known as the Power of a Test

Power of a Test

Let p be the test statistic and A, the rejection region for a test of
a hypothesis for the population (true) parameter m. Then the power of
the statistic test is the probability that the test will lead to rejection of
Ho when the actual parameter value is m. Let W be the statistical test.

That is, power (1) = Probability (W in A when the parameter value is
mm) or Probability of rejecting the Ho when Ho is false.

Power =1-probabilty of Type Il error =1-p8
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D. Chi-Squared Goodness-of-Fit Test

The Chi-Squared (or Chi-square) Goodness-of-Fit test is
suited for populations consisting of various categories when
researchers, students and practitioners are interested in the number
of subjects, objects, or responses that fall into the various
categories. The categories may be two or more. The rationale of the
Chi-squared Goodness-of-Fit test is to test whether there exist
significant differences between observed and expected number of
objects, subjects, or responses falling into each category.

Test/ & N2 e 0;= observed number
. » (0; — Ey) 0; :
Variable X =ZT= ?—n of cases for category 1
9. Qag = i = i
Dieiithatdies =1 =t E;= expected number of
k=2;k<n cases for category I
A= aumnlben of when Ho is true
observations k = total number of
categories
Expected See chi-square
Value and distribution
Variance
Common Ho: X? follows chi — square (¥*) When Ho assumes
Hypothesis distribution with degrees equal PI‘OpOI‘thIl of
cases in each category
of freedomdf =k —1 E;=n/k
df 1s adjusted for
estimated parameters
Small Usually expect frequency is at least 5 by
Expected category

Frequencies

Asymptotic X2 follows chi — square ( x?)

Distribution The sampling distribution is the same as

the chi-square distribution as the expected
frequencies become larger(infinite)

Power Use when no alternative exists and expected
frequencies per cell are greater or equal to 5.
Usually insensitive to ordering
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E. Multinomial Proportions Confidence Intervals

The Multinomial Proportion Confidence Intervals apply to cases
where there are 2 or more possible responses. Letn; denote the observed
cell frequencies on j cell of m-cell multinomial distribution with the
sample size n. The Multinomial distribution is the parameters my, Ty, .., Tp.
Each mn; denotes the probability that an observation will falls in the ith
cell.

The Multinomial distribution is described in the probability mass
functions module of AroniSmartLytics.
Each mn; can be estimated by its maximum likelihood estimator, ﬁiz%,

for j =1, 2, ...,m. Hence m=(my, mp,..,7,,)  Can be estimated by p=B,bs - 0m)-
As the sample size becomes larger, /N(p—=n) has m-variate normal
distribution with zero mean vector and variance matrix Y with elements

ojj =m;(1—m) forj=12,..,m
0ij = —T;Ty forj#k

There are alternative multiple solutions proposed to estimate
multinomial intervals, among the most commonly used being:

e Gold, Quesenberry, and Hurst Method
e Baily Method

The Gold, Quesenberry and Hurst approach uses two asymptotic
simultaneous confidence intervals for mj:

1/2

. pj(1-p)1? x2+2n; +{x?[x*+2n;(N-2n))/N]}
Pji)([ N ] and 2(N+x?)

Where x? is the chi-square distribution with 1 degree of freedom
estimated at 100(1- a/m) percentile, based on the Bonferroni inequality.

Baily proposed the following two simultaneous confidence intervals
for mj:

2 vajt[c(c+1-y? ‘]1/2
) ang Lzltcnr) |

{sin [Ylji
forj=1.2,.,m where C=y?/4N
and Yy; = sin”'\/n; +3/8)/(N +3/4)

and Y,; = \/n; +3/8)/(N+1/8) and x* is the chi-square distribution with 1
degree of freedom estimated at 100(1- a/m) percentile, based on the
Bonferroni inequality.



AroniSmartLytics Handbook for Applied Statistics

F. Poisson Confidence intervals and Test

The estimation of Poisson Confidence Intervals for the
population parameter, the Poisson rate A, 1/1 being the time interval
between two Poisson events, with was proposed in V. Guerriero, A.
lannace, S. Mazzoli, M. Parente, S. Vitale, M. Giorgioni (2009).
"Quantifying uncertainties in multi-scale studies of fractured reservoir
analogues: Implemented statistical analysis of scan line data from
carbonate rocks". Journal of Structural Geology (Elsevier).

The method uses the relationship between the Poisson and Normal
distribution as shown in AroniSmartLytics™ module on the relationships
among the main probability distributions.

20

The method assumes a sample size between 15 and 20 observations.

Let n be the number of sampled points or events or observations
and L the time interval.

The Poisson upper and lower limits of the 1-a confidence interval
are given by:

Zi-q/2 Z1-a/2
Aiow = = vl = s and A, = =l - S

where Z,_,, is the 1—%percenti|e of the standardized normal
distribution

G. Test of Homogeneity of Poisson Rates

A Poisson process may be homogenous or non-homogeneous. In
homogenous Poisson processes, the rate parameter 12 is assumed
constant and does not vary with time or space. A non-homogenous
Poisson process is a Poisson process in which the rate parameters, A(t)
are not constant, but are a function of time and hence may vary with
time. Researchers and practitioners are hence usually required to test
whether the rates are homogenous before making inference.

The standard method of testing the homogeneity of a set of k
Poisson frequencies is to apply the Poisson index of dispersion. The
method usually uses the chi-square goodness of fit. With the method,
the Poisson frequencies constitute observed frequencies in the k cells
with expected values, with k >=2.

Consequently, Test of Homogeneity of Poisson Rates is a special
case of Chi-Square goodness of fit.
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H. Kolmogorov-Smirnov One-Sample Test

The Kolmogorov-Smirnov One-Sample test, named after the
Soviet Russian mathematicians Andrey Nikolaevich Kolmogorov and
Vladimir Ivanovich Smirnov, is suited when one is interested in the degree
of agreement between the distribution of a set of observed sample values
and some specified theoretical distribution. The researcher, student or
practitioner is usually interested in testing whether the observed values
could be reasonably assumed to have come from a population described
by the theoretical distribution. The Kolmogorov-Smirnov test is also a
kind of goodness-of-fit test.

Let Fo be a completely specified cumulative relative frequency
distribution function for the theoretical distribution under H,

Test / D, = max (|Fy(X;) — S,(X;)|) Fo(X)=proportion of

Variable . cases expected to

Definitio i=12..n have a score of
inition equal to or less than

n= number of

. Xi
sample observations
S,(X;)=proportion of
observed cases with

n
1
Fo(X:) =;ZlXi5x a score of equal to
i=1

or less than Xi

Iy,<x is an indicator
function equal to 1
if X;<xand O
otherwise

Common Ho:D, = 0.

Hypothesis Kolmogorov Smirnov test focuses on the

largest of the deviations between Fy(X;) and
Sp(X;) Ho assumes Dn is too small and
within the range of a random error

Small Usually expected frequency is at least 5
samples by category

Asymptotic VnD, follows the Kolmogorov
Distribution ditribution K = Maxeoq1|B(F(t))|, where

B(F(t)) is the Brownian bridge. Pr(K <x) =
@ re, e~ (@—1)°m?/(8x%)

Power More powerful than chi-square for small
samples Assumes ordinal scale
measurement
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I. Shapiro-Wilk test

The Shapiro-Wilk test, named after the Canadian statisticians
Samuel Shapiro and Martin Wilk , is used to asses the goodness of fit for
a normal distribution. The Statistic assumes that under the null
hypothesis, observed values come from a normally distributed population.

Test/ Concept (Z?:ﬂiy(i))z
Definition =Z?=1(yi—)7)2

where y s the ith smallest number in the sample or

ith order statistic

y is the sample mean = Z y; /n

mfy—1
(mTv—lv—lm)l/Z

(ai,..,an) =

where (m; m,)" with m; m, the expected values
of the order statistics of independent and
identically-distributed random variables
sampled from the standard normal
distribution, and V is the covariance matrix
of those order statistics.

Hypothesis Testing The null hypothesis is rejected when W is too small
and Test Validity

Other Assumptions The goodness of fit of a normal distribution
and may also be checked graphically via the
quantile, Q-Q, plot

J. Hodges-Lehmann Confidence Interval for
The Median

The Hodges-Lehmann Confidence Interval for The Median test,
also known Hodges-Lehmann estimator or Hodges-Lehmann-Sen estimator,
named after the American statisticians Joseph Hodges and Erich Lehmann
and Indian statistician Kumar Sen, is used to estimate the location
parameter or median of a population or test the differences between two
population location parameters.



AroniSmartLytics Handbook for Applied Statistics 23

K. Lilliefors test

The Lilliefors test, named after the American statistician Hubert
Lilliefors is used to test the goodness-of fit under the null hypothesis of
a normally distributed population. It is an extension of Kolmogorov-
Smirnov test.

Lilliefors Test is similar to the Kolmogorov-Smirnov Test for one
sample. However, unlike the Kolmogorov Smirnov test, Lilliefors test
does not make any assumptions about the shape and the form of the
normal distribution. The expected value or mean and the variance are not
specified a priori, but estimated from the data. Hence, Lilliefors Test
may be viewed as biased by the sampling error since the expected value
and variance are estimated from the observed data.

Lilliefors involves the following steps:

e« Step 1: Estimate the population mean and population variance
from the observations.

e Step 2: Find the maximum discrepancy between the empirical
(observed) distribution function and the cumulative
distribution function (CDF) of the normal distribution with the
estimated mean and estimated variance.

e Step 3: Just as in the Kolmogorov-Smirnov test, this will be
the test statistic.

Researchers and practitioners often replace Lilliefors Test by the Q-
Q plot.
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L. Test for Distributional Symmetry

The Test for Distributional Symmetry is a test of central
tendency. It is suited when one is interested in the shape of a
distribution. The statistician wants to make inference on an unknown
but symmetrical distribution. The test examines three subsets of
three variables each: Right triple, Left Triple and Neither. Each of
the possible triples is then coded as left, right and neither before
computing the statistic of interest.

Test/Variabl

e Definition T = #right triples — #left triples

Expected Expected value of the
Value standard normal distribution
Variance Variance of the normal

distribution

Common Ho:ur =0 or X has a symmetric distribution.
Hypothesis Under Ho, T is too small and within the range
of a random error.

Small Usually expect sample size
samples is around 20
Asymptotic z= T/or Z follows a

standard normal
distribution

Distribution n
. _(n—3)(n—4) 2
O = % i

n—1Mn-2) =

Bi= # right
N-3 , . . .
+— z B2 triples involving
N_415j5k5n X -#left triples
+n(n—1)(n—2) involving X
6 Bjk= # I'lght
-1 triples involving

m—3)(n—4Hn -5 _, both Xj Find Xk
T A= D(n-2) ]T # left triples
involving both X;

and Xk
Power Reasonably good for Assumes interval
relatively large samples scale

measurement
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M. The One-Sample Runs Test of Randomness

The One-Sample Runs Test of Randomness is a test of
independency. It attempts to test whether a sample is randomnly
drawn from a population, that is whether successive observations
are independent.

Techniques exist that use the order of sequence of
observations to test randomness. The One-Samples Runs Test of
Randomness is based on a different approach which relies on runs. A
run is a succession of identical symbols followed by different or no
symbols.

For example a series of successive YES answer on a given
guestion, before a NO answer is observed constitutes a run. The test
may be one or two-tailed.

Test/Variable r m= # of observations
Definition = number of runs in the sample in the one category

k= # of observations
n = sample size = m+k in the other category

Common Ho:r, < u, <ry or the observations appear in a

Hypothesis random order. If the number of runs is less or
equal to the lower threshold or greater or
equal to the upper threshold, Ho is rejected

Small The test is suited for small samples (m and k
samples less than 20)
Asymptotic Mean:u =%+1 1 .
—ifr<2mk/n +1
Distribution T 127 J
, _ 2mk(2mk —n) 1 2mk
7 =" Z follows a
or standard normal
T_I_h_ZTrfllk_l distribution
 [[zmk@mk —n]/[n2(n — 1)]
Power- Nonparametric test of randomness of a

efficiency sequence of events.



AroniSmartLytics Handbook for Applied Statistics 26

N. The Change-Point Test

The Change Point Test is a quantile test. It attempts to test
whether there was a shift in an ordered sequence of observations. The
test assumes that there is an underlying process that generates the
observations in an ordered sequence, that the distribution of responses
has one median, and at some point there was a shift in the median.

The test may be one or two-tailed. One-tailed test looks at upward
or downward shift in the distribution. Two-tailed test assesses the
potential shift, without regard to the direction of change.

Test/
Variable
Definition

Asymptotic
Distribution

Power-
efficiency

For a binomial variable, X For an ordinal

variable, X
The number of successes: ’

m= Y, X; The sum of the ranks
of the variables at or

The number of failures: k=n-m . .
before point j:

Cumulative number of Vl/jzzi_lri : i< n
successes at each point j in a = o o
sequence: S = {=1Xi The statistic fi1v1d1ng
the sequence into
The largest absolute observations
difference observed in the occurring before, m,
sequence: and those occurring
5 |n (5 ]m)| after k, the change:
=max |—|S; ——
e mk\”7 n Ky = max|2w; — j(n + 1)|
. ' 1
Variance of Wj: EifW<m(n+1)/2
mk(n + 1) h =
2, =— - 1 m(n+ 1)
12 ——ifW > ——
w+p- D) ’ ’
7 = —2 Z follows a
VImk(n+1)]/12 standard normal

W is the sum of Wj where Kn,x distribution
is maximized.

There is usually not direct and straightforward
nonparametric for dichotomous variable The test is
appropriate for ordinal or continuous measurement
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O. The McNemar Change Test

The McNemar Change Test, named after the American psychologist
and statistician Quinn McNemar, attempts to test the significance of
changes after an experiment or event for subjects in a sample. In
McNemar test, each subject serves as its own control.

The test assumes that there is measurement, at nominal or ordinal

scale, on the subject

“before” and “after” the experiment starts. A

fourfold table crossing After and Before the event measurements is
used in the study. The total number of subjects with changes is
computed and used to test the significance of changes, without regard to
the direction of change. Assuming that A subjects have their responses
changed in one direction and B subjects have their responses changed in

the other direction:

Test/
Variable
Definition

Common
Hypothesis

Small
Expected
Frequencies

Asymptotic
Distribution

Correction
forContinuity

Power

2 (0. — )2 0;= observed number of
2 ( L l) o
X° = T — cases for category 1
i=1 L

[A-(4+D)/2]? , [D—(A+D)/2]? Ei= expected number of
= + cases for category I

(4+Db)/2 (4+D)/2 when Ho is true
_la-p1? . —
= A+D ’ with df=1 A+D total number of
subjects whose response
changed

Ho: X? follows chi — square ( x?) distribution with degrees

of freedomdf =1. When Ho assumes equal
proportion of cases in each category: E; =n/k

Use the binomial test for very small samples

X? follows chi — square ( x?)

with df=1. The sampling distribution is the
same as the chi-square distribution as the
expected frequencies become larger(infinite

_ [la-p|-1]?
T A+D

X? with df=1

Use when samples are relatively larger.
Otherwise use the binomial test
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P. The Sign Test

The Sign Test attempts to test the direction of the changes for two
measures, especially when the measures are qualitative than quantitative.
The test is suited for two related samples when the experimenter and
researcher are only interested in the direction of the changes, with the
assumptions of a progressive scale measurement.

There are no assumptions on the form and the shape of the
underlying distribution or the populations from which the sample are
drawn. The only requirement is the matching of the subjects under study.
Assuming that A subjects have their responses changed in one direction
and B subjects have their responses changed in the other direction:

Test/ Variable
Definition

Common
Hypothesis

Small Samples

Asymptotic
Distribution/

Large Samples

Correction for
Continuity

Power

P[X; > Y] =P[X; <Y]=1/2

Ho:
PIX;>Y]=P[X;<Y]=1/2

X;= judgment or score
under one condition

Y;= judgment or score
under the other
condition

X;qandY; are the
matched scores

Ho assumes equal
proportion of cases in
each category

Use binomial test for very small

samples with p=q=1/2

Mean: ,ux=np=§

Variance: 02 = npq =
n/4

The sampling
distribution Z is a
normal distribution
with mean n/2 and
variance n/4

This corresponds to
using x+0.5 when
x<n/2 and x-0.5 when
x>n/2

Use when samples are very small.
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Q. Marginal Homogeneity test

The Marginal Homogeneity Test attempts to test the significance
in the differences among the rows and columns of a contingency table. It
is often viewed as an extension of McNemar test.

Marginal homogeneity refers to equality (lack of significant
difference) between one or more of the row marginal proportions and the
corresponding column proportion(s).

When the rows and columns proportions are equal, there is
agreement among the column and row factors. Marginal homogeneity is
often useful in analyzing rater agreement.

Usually the contingency table is as follows, with Rater 1 and Rater 2
ratings subjects with scores 1, 2, ...k. Pij is the proportion or the
frequencies of all observations assigned to score i on Rater 1 and j from
Rater 2:

Rater 2
Rater 1 1 2 ee M Column
1 pl11 p12 p13 p1.
2 p21 p22 p23 p2.
m p31 p32 p33 pr.
Row p.1 p.2 p.k 1.0

Here p;; denotes the proportion of all cases assigned to category i
Rater 1 and category j by Rater 2.

The terms p1., p2., and pm. denote the marginal proportions for
Rater 1--i.e. the total proportion or frequency of times Rater 1 uses
categories 1, 2, .., m, respectively.

Similarly, p.1, p.», and p ,, are the marginal proportions for Rater 2.

The Marginal Proportions test can then be conducted using the
Chi-square test, in case of assumed independence or McNemar test, if the
observations are assumed to be potentially correlated.
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R. Likelihood Ratio Test

The Likelihood Ration Test is used to compare the adequacy and
fit of two models, either related or not. For related models, one is
nested within and is a special case of the other. The nested simpler
model is the null hypothesis model.

The test is based on the likelihood function. The likelihood function
expresses the probability of some observed outcomes given specified
parameter values. The likelihood function quantifies the likelihood of
observations coming from a specified model. The likelihood ratio then
expresses how many times more likely the data are under one model than
the other.

For practical purposes and simplicity, the logarithm of the likelihood
ratio is used. Consequently, the statistic is known as “Log-likelihood
ratio”. The estimation of the statistic and the probabilities associated
with the statistic can be done using Wilks’ theorem or Neyman-
Pearson Lemma.

Based on Wilk’s therorem, named after the American statistician
Samuel Stanley Wilks, the statistic from the Log-likelihood ratio, usually
denoted D, as the difference between the 2/n (likelihood)
approximately follows a chi-square distribution with degrees of freedom
equal df2-dfT71, under the null hypothesis that the nested model is
correct.

df2 and df71 are respectively the number of free parameters from
the alternative (general) and the null (nested) model.

Test/ D < likelihood for the null (nested)model >
=—2In

Concept
Definition

Likelihood foe the Althernative(general)model

=-2ln(likelihood for the null model)+
2In(likelihood for the alternative model)

= 2[In(L,) — In (Ly)]

Hypothesis D = 2In(L,/Ly) = 2[In(L,) — In (Lq)]
Testing follows defz—dﬂ

Other The Likelihood Function needs to be
Assumptions estimated in order to apply the test.

and
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S. Likelihood Ratio Confidence Intervals

The confidence intervals of the Likelihood Ratio Test are based
on Neyman-Pearson Lemma, named after the Polish American
statistician Jerzy Neyman and British statistician Ego Sharpe Pearson.

From the Lemma:

Ho: null model with parameters 6, vs. H1: Alternative model
with parameters 0,

The likelihood ratio test which rejects Ho in favor of H1 is

formulated as the most powerful test of size a« when A(x)=%sn where
1

P(A(x) <n|Ho) = a, the significance level.

Test/ Concept A) =20 < where L(6|x) is the likelihood

. P . L(O1]x —
Definition function

Hypothesis Testing q.P(A = c|Ho) + P(A< c|H) = a
and Test Validity If A > c, do not reject HO;
If A < c, reject HO;

Reject with probability q if A =

C.
Other Assumptions The Likelihood Function needs to be
and estimated in order to apply the test.

T. Confidence Intervals for Odds ratio

The Confidence Intervals for Odds Ratio are applied to assess
the odds of an event or observation occurring in one group against the
odds of the event or observation occurring in another group.

The odds ratio is used to measure the association or the degree of
independence between two categorical or dichotomous samples or
groups. In general, the problem suitable to Odds ratio tests is presented
as follows:
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Variable Y
Variable X Column
0 pi.
1 P2.
Row 1.0

where p11, p10, p01 and p00 are non-negative "cell probabilities"
that sum to one. The contingency table from the observations is:

Y =0 Y =1

With the estimated proportions, p;
where p;= nij / n, withn = n11 + n10 + n0O1 + n0OO being the
sum of all four cell counts.

The odds for Y within the two subpopulations defined by X = 0 and X
= 1 are defined in terms of the conditional probabilities given X:

Y =20 Y = 1

X = 0 Poo / (Poo + Por / (Por +
Po1) Poo)

X = 1 Pio / (Py1 + P11/ (Pro +
Pio) Pi1)

Thus the odds ratio is:

P11/ (P11 + P10) /Po1/ Po1 + Poo) _ P11Poo
P10/ (P11 + P10)! Poo/ Po1 + Poo) P1oPo1

odd ratio =
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Test/ Concept The sample log odds ratio is:
Definition

P11Poo — N11M00
log(ﬁmﬁm) o (71107101)
Hypothesis Testing The distribution of the log odds ratio
and Test Validity approximately follows a normal distribution
with mean = sample log odd ratio and
standard deviation = | —+1+1 4+ 1
Moo MNi0 Mo1 M11
Other Assumptions The odd ratios have a symmetrical
and property.

U. Barnard's test

The Barnard’s test, named after the British statistician George
Alfred Barnard is used to test the independence of rows and columns in a
contingency table. It is an exact test and presents an alternative to and
with the claim of being sometimes more powerful than the Fisher's
Exact test. Barnard’s test is more computationally involving than the
Fisher’s exact test.

V. Savage and Maximum Efficiency Robust Test
(MERT) Scores.

The Savage Test, named after the American statistician
Leonard Jimmie Savage, uses the rank scores, or linear rank
statistic to test the independence of observations with the assumptions
of a logistic distribution under the null hypothesis.

The Savage exact scores from a set of observations drawn from a
sample of size n and ranked from lowest to the largest value are:
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1 .
n—i+1’

a*[n,i]=%+ﬁ+---+ i=1,..,n

Asymptotically the Savage test corresponds to log-rank test.

i
b[n,i]=In{1 ———
n

+1};i =1,..,n

Savage Scores test is popular in the area of Game theory economics,
in which Leonard Jimmie Savage was a renown expert.

MERT: Maximum Efficiency Robust test, developed by American
statistician Joseph L. Gaswirth is also related to log-rank test. It is a
linear combination of efficient robust scores and is highly dependent on
the situation under analysis. There are several theoretical derivations of
MERT tests.
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W. The Wilcoxon Signed Ranks Test

Experimenters are often interested not only in the direction, but
also in the magnitude of changes. While the Sig Test is suitable for the
direction of the changes, it does not test the magnitude.

Wilcoxon Signed Ranks, named after the American chemist and
statistician Frank Wilcoxon, tests whether the means of the
population, from which two paired samples are drawn, differ. The test is
used to assess the magnitude by assigning weights to the paired
observation with a large difference.

To identify the pairs with the large absolute difference, the
observed differences are ranked from the smallest to the largest, without
regard to sign (absolute value of the differences) with the smallest
assigned rank 1. Two statistics are developed from the ranks:

T+ = the sum of the ranks of the positive differences and

T- = the sum of the ranks of the negative differences.

Test/
Variable
Definition

Common
Hypothesis

Small
Samples

Asymptotic
Distributio
n/

Large
Samples

Correction
for Tied
Ranks

Power

d,i=X;-Y; X;= observed value of pair

1 under treatment one
number of ranks

= n(n+1)/2 Y= observed value of pair
i under treatment two

Ho: Sum of the ranks of positive d; is equal to the
sum of the ranks of negative d;. Ho assumes that the two
treatments are equivalent

Use binomial test for very small samples with
p=q=1/2

Mean: pu J D) Z is approximately
YoHr p ) .
normally distributed
Variance: U%Jr:w with mean 0 and variance
1
_Tr—pp+ . Tr-n(n+1)/4
T ok Jnm+D(@ntD)/2a
cr%+ = —n(nﬂz)fnﬂ) —1/4.8 Z;-Ll ti(t; — (¢t + 1); where

k= number of groupings of different tied ranks
and tj = number of tied ranks in grouping j.

The test is powerful for small samples
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X. The Permutation Test For Paired Replicates

Experimenters are often interested in the occurrence of specific
data within the observations. The Permutation Test is a powerful
nonparametric test for this type of situations. It doesn’t make any
assumptions about a specific form of the distribution, normality, or
homogeneity of the variance. The test is suited for all kinds of data that
have a numerical meaning.

The test looks at the all possible pairing of the observations from
two treatments, and assumes that each pairing is randomly assigned. The
test may be one or two-tailed.

Test/ di=X;-Y X;= observed value
Variable Number of possible of pair i under
Definition outcomes for random treatment one

pairs: 2N Y;= observed value
of pair 1 under

Number of possible
treatment two

outcomes in the

region of rejection: a = signicance level
a2V
Common Ho for two — tailed test: Ho assumes that
Hypothesis Sum of dif ferences of the two treatments

positive d; is equal to the are equivalent

sum of the dif ferences of negat
Power The test is powerful among non parametric

tests, especially for ordinal and interval
data
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Y. The Fisher Exact Test for 2x2 Tables

In experiments, often paired samples may be impractical, too costly,
or inappropriate. In such cases, independents samples may be used
instead.

The Fisher Exact Test for 2x2 Tables, named after the English
statistician and biologist Sir Ronald Aylmer Fisher, is a very useful
test when analyzing nominal or ordinal data with small independent
samples. It is appropriate when observations from two independent
samples fall into one of two mutually exclusive and specific classes.
Every subject in each sample may fall in one or the other class based on
the observation value.

Observations may be classified as in the following contingency
table:

' Group or Sample Combined
Variable

| Frequency
Class 1 A o arr
Class 2 C D Cr b

The test may be one or two-tailed.
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Test/ (A+C)(B+D) A, B, C, D= number of

Variable p= A B subjects in one

L. n f 1
Definition (A+B) category of sample vs

treatment

[A+BIC+DA+ O B+D)] X

- IAIBIC1 DI . p1s t ‘e'exact

" probability of

observing a specific set
of frequencies in a 2x2

contingency table.

Common Ho : py = p,

Hypothesis p;= probability that an observation on randomnly

selected subject from group 1 falls in a given
class. Ho assumes that the assignment to the two
groups is random. For two tailed tests, the
alternative is that the assignment is not random.
For one-tailed test, the alternative is whether
there is a significantly higher proportion of one
class.

Asymptotic

Distribution/ The test uses exact probabilities and makes no
Large Samples assumptions for asymptotic distribution

Power The test is powerful among non parametric tests,
especially for dichotomous nominal

Z. The Chi-square Test for 2 independent samples

For two independents samples or groups, when the data consists of
frequencies in discrete categories, the Chi-square Test for Two
Independent Samples may be the right test to use.

The experimenter wants to test whether the two groups differ with
respect to some characteristics. If the groups do not differ with respect
to the characteristics, then there is interaction between the groups and
the variable of interest. The test compares the proportions of cases from
one sample or group in the various categories of the variable. The
decision about the independence between the groups and the variable of
interest depends on the result of the comparison: if the proportions are
the same across the groups for all the classes, then there is
independence; otherwise there is interaction.
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The test is accomplished based on a threshold of proportionality
expected to occur as a chance when there is no interaction.

Test/
Variable
Definition

Common
Hypothesis

Small
expected
values

Asymptotic
Distribution/
Large Samples

2x2 Contingency Table
and Correction for
Continuity

rx2 tables-
Equation for
partition t.

Power

k& (xyy — Eyy)? x;j= observed number of
X2=ZZT cases for the category
i=1j=1 Y or class 1 under
£ L xijz treatment j
- ;Fl Eij " Ej= number of cases
expected for the
n = sample size category or class i

under the treatment j
k=number of groups
c=number of
categories of classes
for the variable

Ho : There is independence between the two groups and

the variale of interest. Ho assumes that the two
groups/samples/ treatments are independent of
the classes of the variable or that there is no
interaction between the groups and the variable
of interest

The chi-square test Usually a minimum of 5
assumes a minimum of subjects in each cell is
frequencies within expected.

each cell.

X? follows chi — square (%) with degree s of freedom
df= (r-1)(c-1)

X2 — n[|AD-BC|-n/2]?

T (A+B)(C+D)(A+C)(B+D) with df=1

= sum for

t t 2
2 _ nz(nt+1,2Ei:1ni1_nt+1,12i:1ni2) _
Xt_ t t+1 t_172"7r']—7 Ci
C1CoRe41(Zi=; R)(ZHEL Ry)
column 1 and R; sum for row 1

The test is usually the best where it 1s
appropriate. It may not be appropriate for
situations where order is taken into account
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AA. The Median Test

In experiments with two independents samples, experimenters may
be interested in knowing whether the two groups differ in central
tendencies. The Median Test helps to assess whether two independent
groups, with or without the same size, have likely been drawn from
populations with the same median.

The Median test is appropriate for nominal or ordinal scale
measurements. There may also be specific instances where even interval
measures may not have alternative to the Median Test. Observations may
be classified as in the following contingency table:

Group or Sample

Variable Combined
Frequency
II
Class 1 A B A+B
Class 2 C D C+D

Test/ (m)(r) A, B, C, D= number of
Variable p[A,B]=% subjects in one category
Definition (A+B) of pair 1 under treatment

one; p is hypergeometric

_ AN SOl b abiliny dieteibution.

n!A!'B!C! D!
Common Ho : median of Group I = median GroupIl. Ho assumes that
Hypothesis the medians in the populations from which the

two samples were drawn are the same. The test
may be one or two-tailed.

Asymptotic When n is large, use the chi-square (corrected

Distribution/ for continuity). Otherwise use the Fisher
Exact test

Large Samples

Correction for 2 ___nllAb-BClom/2l? Loy gpoq

Continuity (A+B)(C+D)(A+C)(B+D)

Power- The power efficiency decreases as the sample

Efficiency size increases reaching 2/m.
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BB. The Wilcoxon-Mann-Whitney Test

The Wilcoxon-Mann-Whitney, also know as Mann-Whitney U test,
is a nonparametric test that can be used to analyze data from a two
independent groups design when the measurement is at least ordinal.

Named after American statistician-chemist Frank Wilcoxon,
Austrian-American statistician Henry Mann and American
Statistician Donald Ransom Whitney, it may help to analyze not only
the independence, but also the degree of separation (or the amount of
overlap) between the two groups. The test assumes that observations of
the two groups are sampled from the same continuous distributions.

The null hypothesis assumes that the two sets of scores are samples
from the same population, and hence, because sampling was random, the
two sets of scores do not differ systematically from each other.

The alternative hypothesis, on the other hand, states that the two
sets of scores do differ systematically. If the alternative is one-tailed, it
further specifies the direction of the differences, i.e., scores from the
test group are systematically higher or lower than the scores from the
control group.

To apply Wilcoxon-Mann-Whitney test, the scores from the two
groups are ranked in order of increasing size, taking into account the
algebraic size, i.e, assigning the lowest ranks to the largest negative
values. The ranks from each group are then summed separately.

Test/ We + W _NWv+1) W,= sum of the ranks

Variable “ Y 2 from group X

Definition n=sample size for X. Wy= sum of the ranks
m= sample size for Y. from group Y

N= sample size = m+n
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Common
Hypothesis

Small
Samples

Asymptotic
Distribution/

Large
Samples

Correction
for ties

Power-
efficiency

Ho: the average rank in
the two groups are
equal

For small samples the
statistic determines
the exact probabilities
under Ho

m(N+1)
2

Mean: uy, =

. mn(N+1
Variance: g2, = 7@+l
Wy 5

_WxtS-pwy  Wx+5-m(N+1)/2

78% Jmn(N+1)/12

Z

Wx+.5-m(N+1)/2

If the average rank in
one group 1is greater
than the average in the
other group, the Ho is
rejected,

Z 1s asymptotically
normally distributed
with zero mean and
unit variance. 0.5 is
added or deducted for
finding respectively
left and right tail
probability

with g the

VA =
J[mn/N(N—l)][(Ns—N)/lz_Z]gﬂ(z}gﬂ t3—t]-)/12]

number of groupings of different tied ranks and
tithe number of tied ranks in the jth grouping.

The test may be a powerful alternative to t test,
with power-efficiency reaching up to 3/m as N

increases.

CC. Robust Rank-Order Test

The Wilcoxon-Mann-Whitney test assumes that observations of
the two independent groups are sampled from the same continuous
distributions and are on at least the ordinal scale. Although the null

hypothesis states that the medians from the two groups are the same, it
is implied that the distributions are the same, hence the variances of the
distributions are equal. The alternative assumes that the variances are
the same, but only the medians systematically differ.

In some instances, the experimenter wants to test whether the
medians are the same without assuming that the distributions are
the same. The Wilcoxon-Mann-Whitney may not be appropriate in these
instances. The Robust Rank-Order Test is the best alternative for such
cases, especially in situations known as the Behrens-Fisher problem,
where measurements are restricted in range and based on other factors.
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To apply Robust Rank-Order test, the scores from the two groups
are ranked in order of increasing size, taking into account the algebraic
size, that is, assigning the lowest ranks to the largest negative values.

For each value in the control group X, the number of observations
of the test group Y with a lower rank is captured. This number, called
“placement” of the X scores is denoted U(YX;).

Then the mean of U(YX;)_ is computed and denoted U(YX). Similarly
the placement of Y scores, denoted U(XY;), the number of observations

from X that precede each Y, is tabled, and the mean U(YX) calculated.

Test/
Variable
Definition

Common
Hypothesis

Small
Samples

Power-
efficiency

mU(YX) — nU(XY)

V= 2.V, ¥V, + UXY)U(YX)
where:

O U(YX;
R L

i=1

= U(XY,
UXY) = Z (n )

j=1

n=sample size for X

m= sample size for Y

Ho: there is no
difference between the
two groups with regard
to the variable of
interest

For small samples the
statistic determines
the probabilities under
Ho

V.= index of variability
for group X

V,= index of variability

for group Y

m

V= ) (VXD - UFrXP

i=1
v, = Z[U(XYL‘) - UXNI?

n
j=1

If the observed value of
U has an associated
probability less or
equal to the threshold
value, reject Ho,

Similar power-efficiency as the Wilcoxon test
but suited for testing the independence without
requiring equal variance.
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DD. Kolmogorov-Smirnov Two-Sample Test

The Kolmogorov-Smirnov Two-Sample test, named after the
Soviet Russian mathematicians Andrey Nikolaevich Kolmogorov and
Vladimir Ivanovich Smirnov, is suited when one is interested in
knowing whether two independent samples were drawn from the same
population or two populations with the same distribution.

The researcher, student, or practitioner is usually interested in
testing whether there is an agreement between the cumulative
distributions of the two samples.

Let S, and S, be the cumulative relative frequency distribution
function for, respectively, the first sample with size m and second

sample with size n.

In the case of two samples, the differences may come from
deviations dues to central tendencies, skewness, dispersion, etc.

Hence two tests are usually used: one tailed and two-tailed test.
Two-tailed tests looks at the differences among the distributions,
whereas one-tailed test looks at the direction of the difference.

Test/
Variable
Definition

Common
Hypothesis

Dy = max (|5, (X) — S, (X)) for
two tailed test

Diyn = max ([Sm(X) = S, (XD for
one-tailed test

n, m= number of sample
observations

Ho:Dp, = 0.
Alternative H1:

Two tailed: the
population are from
different populations.

One-tailed: the
population values from
which one sample was
drawn are stochastically
larger than the population
values from which the
other sample was drawn.

Sm(X): proportion of
observed cases from
sample m with a
score of equal to or
less than X

S,(X): proportion of
observed cases from
sample n with a
score of equal to or
less than X

Reject Ho when

mn

m+ann>Ka
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Small/Large Usually use mnD,,, for Assumes ordinal
samples small samples and D,,, for scale measurement
large samples

Asymptotic X2=4D2m,n%is
Distribution approximated by the chi-

square distribution with 2
degrees of freedom (df=2)

Power- Higher power-efficiency than that of t-test for

Efficiency small samples. Power decreases with larger
samples. Higher power-efficiency than chi-
square and median test.

EE. Anderson-Darling Test

The Anderson-Darling test, named after the named after
American mathematical statisticians Theodore Wilbur Anderson
and Donald A. Darling, is used to assess whether a given sample of data
did not arise from a given probability distribution. The test is
distribution free and assumes that there are no parameters to be
estimated in the distribution being tested.

It is most often used in cases where experimenters are interested in
a family of distributions. In those cases, the parameters of the family of
distributions along with the critical values are estimated from the data
and the test needs to be adjusted accordingly. The test can be viewed as
a goodness of fit test and will be used to test normality and departures
from normality. The test is also often used in parameter estimation, by
estimating and minimizing distances.

Anderson-Darling Test is available for both one and k-samples. In
k-sample settings, the goal is to test whether several collections of
observations can be modeled as coming from a single population, where
the distribution function does not have to be specified.

For one sample-test, the Anderson-Darling test assesses whether
a sample comes from a specified distribution. It makes use of the fact
that with a given hypothesized underlying distribution, under the null
hypothesis that the data arise from this distribution, the data can be
transformed to a uniform distribution.

The test is conducted against the cumulative distribution of the
hypothesized distribution. Hence the data is first ordered in ascending
order: {Y;< Y,< Y3 --- Y,.}.
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Test/ A?=-n—-S where F( ) is the _
Variable 5 cumulative de'n31ty
Definition S=Z’,Z=1M[lnF(Yk)+ or mass function of
ln(l—F(Y )ﬁ the hypothetical
ntl-k probability

distribution. No
parameter from F 1is
estimated.

Normality Test for Normality:

X — 1
Yi = 2L 2

Q

A? = —n— %Z[(Zi —DIn®) + 2Mn—1i) + Din (1 — d(¥)))]
i=1

W, if the mean is known

where I = {)? _ %ngi if the mean is unknown

( a2, if the variance is known

n
1
—Z(Xi — w? if known mean known and unknowo variance
n

n

2% = 1
n
! Z(X T st
| — ; otherwise
n
Power- Powerful for testing Comparable to
Efficiency normality. Kolmogorov-

Smirnov and
Shapiro-Wilk tests

FF. The Permutation Test For Two Independent
Samples

The Permutation Test is a powerful nonparametric test for assessing
the significance of the differences between the means of two
independent samples, when the two sample sizes m and r are small. The
test is suited for the data at the interval scale since it uses the values
of the scores. The testing approach determines the exact probability
associated with the observations without making assumptions about the
underlying distributions in the populations of interest.

For testing, specify the region of rejection that includes the
number of the most extreme possible outcomes. The extremes
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combinations are those that give the largest differences between
the sum of values from the potential control sample X and the sum
of values from the potential test sample, YY.

Test/ m=number of observed
Variable Namben of posaibh o values in the control
Definition m+r) treatment

outcomes: (

r r= number of observed

Number of possible values on the test
outcomes in the region treatment

of rejection: a(m;l—r)

Common If the observed scores fall within Ho assumes that the
Hypothesis two treatments are

rejection region,reject Ho at .
equivalent

level a of significance

Asymptotic Xy

= — — , has
Distribution/ VIXi=X)2/(m(m-1)+ X(Yi=¥)2/(mn(r(r-1)
approximately a Student t distribution
Large with df= m+r-1
Samples
Power- The test is powerful among non parametric tests

Efficiency

GG. The Siegel-Tukey Test for Scale Differences

The Siegel-Tukey test, named after the American psychologist
Sidney Siegel and American statistician John Tukey, is a non-
parametric test which may be applied to data measured at least at an
ordinal scale to test for differences in scale and variability between two
groups.

The test is used to determine if one of two groups of data tends to
have more widely dispersed values than the other. In other words, the
test determines whether one of the two groups tends to move, sometimes
to the right, sometimes to the left, but away from the center.

The test is suited for the data at the ordinal scale, when one group
is expected to have more variability that the other.
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The Siegel-Tukey test focuses on the range or spread of one
group compared to another. The test assumes that the medians of the
two groups are the same or known. If they are known, they are
subtracted from the observation values to adjust the scores, so that the

medians are equal.

To compute the test, combine the observations from the X and Y
groups and arrange them in a single ordered series, associating each
observation with its group. Assign ranks order to observations
sequentially and alternatively from the most extreme

observations to the

lowest. The approach assumes that the extreme

observations are atypical and the central (lowest scores) are typical.

Finally calculate the sums of the ranks for each group. Testing is
conducted using Wilcoxon test.

Test/
Variable
Definition

Common
Hypothesis

Asymptotic
Distribution/

Large
Samples

Power-
Efficiency

W, =the sum of the
ranks in group X
adjusted for sample
size

W, =the sum of the
ranks in group Y,
adjusted for sample
size.
Ho:the dispersion of the two

groups is the same
that is

Hy:0f = oy

Hy:0f > of

N/A

m=number of observed

values in the control
treatment

n= number of observed
values on the test
treatment

Ho assumes that the
dispersion among the
two groups are
equivalent, hence Wx
and Wy are about the
same. The probability
comes from Wilcoxon
test with m and n for
Wy value

The test usually has a relatively low power-

efficiency
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HH. The Moses Rank-Like Test for Scale Differences

The Siegel-Tukey test is used to test for differences in scale and
variability between two groups. Hence, the test helps assess homogeneity
and heterogeneity between two groups. However, the test assumes that
the medians are the same or known.

When the medians are assumed not equal and unknown, the Siegel-
Tukey test is not applicable. The Moses Rank-Like Test for Scale
Differences is used in these cases. The test also focuses on the range
or spread of one group compared to another, when observations are
measured at least at the interval scale.

To compute the test, the observations from the X and Y groups are
divided into equal subsets of at least two observations in each group.
The assignment of observations to a subset must be random.
Observations not assigned to a subset are discarded. For each subset,
calculate the sums of the differences from the subset mean. Then, for
each group, compute the dispersion.

Test/
Variable
Definition

Common
Hypothesis

Asymptotic
Distribution
/Large
Samples

Power-
Efficiency

D(Xj)=Z{'(=1(Xij_Xj)2, m=number of subsets of X
dispersion index for n= number of subsets of Y
X .

SOy Xj; data for subset j of X,
—\2

D(Y) =X (Yy - 1),

dispersion index for

group Y where

Y data for subset j of Y,
i=1,2,..,k; j=1,..,m or n.

Ky k= number of data in a
)?jz i=1 fi/k and subset.

Ho:the dispersion of the two groups is the same

that is Hy:0f = of

Hy:0f # 0} for two-tailed test Ho assumes that the
variability among the two groups is the same.
Hy:0f >0} orHy:0f <of for one-tailed test

For large samples, the approximation of
the Wilcoxon test may be used

The efficiency increases with the size of the
subsets and the sample size.
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IT. The Cochran Q Test

The Cochran Q Test named after the Scottish-American
statistician William Gemmell Cochran is used to analyze a two-way
randomized block designs where the response variable can take only two
possible outcomes (coded as O and 1, or Yes and No). It may be looked at
as the extension of MacNemar test with multiple related samples, k in
which k subjects, each from a different group are matched.

The Cochran test assumes that there are k > 2 experimental
treatments and that the observations are arranged in b blocks as follows:

Sample or Treatment

Number of
Successes

2

Block 1 X11 X12 X1k X+
Block 2 X21 X232 X2k X g+
Block 3 X 31 X32 X3k X3
Block b Xb1 Xb2 Xbk Xp*

Total X1 X g X« X«
Test/ Variable yk (X ._&)2

i=1\**J

Definition Q=k(k—-1) ;

k= number of treatments or samples
X.;= the total for column (sample) j
X;,= the total for row (block) 1

b= the number of blocks or groups

n= the grand total or sample size.

Common Hypothesis Ho:there is no dif ferences in the scores across all groups
Asymptotic Q is approximated by y? with
Distribution/Large df=k-1

Samples

Power-Efficiency Cochran Q test is suited for dichotomous
data where an alternative parametric
statistic may not exist
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JJ. Friedman Two-Way Analysis of Variance by
Ranks

The Friedman Two-Way Analysis of Variance by Ranks, named
after the U.S. economist Milton Friedman is a non-parametric
statistical test to test whether k matched samples have been drawn from
the same population. Similar to the parametric repeated measures
Analysis of Variance (ANOVA), it is used to detect differences in
treatments across multiple test attempts.

The procedure involves arranging the observations in a two-way
table with n rows and k columns. The rows represent the matched sets of
subjects, and the columns represent the groups, conditions or
treatments.

The scores in each row (or block) are combined together and ranked
from 1 to k. Then the values of ranks by columns are considered. The
Friedman test determines the probability that the samples, that is, the
different columns of ranks come from the same population, or
equivalently that the k samples have the same median.

Applicable to complete block designs, it is thus a special case of
the Durbin test.

Sample or Treatment

Subjects

2

2 X21 X229 X2k
) X31 X392 X3k
n Xp1 Xbp2 Xpk

Sum of Ranks X1 X9 X *k
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Test/ b= the number of

Variable . blocks, groups or

Definition F = |—2 Zr_,z _an(k+1y treatments
nk(k+1)j=1 ’ n= the sample size.

k= number of treatments
or groups (columns)

n= number of rows
(subjects)

Ty j= Sum of ranks in
column j

Common Ho:0, =0, = - =0, There is no dif ferences in

Hypothesis Hy:6; # 0;, for at least two the medians across all
of the treatments e TGS

Asymptotic Fr is approximated by y* with df=k-1

Distributio

n/ Large

Samples

Correction 125K, 72| -3n%k(k+1)?

g=

for Ties g L where t;; is the size of
nk(k+1)+(k+1])_
the jth set of tied ranks in the ith group
and g;= the number of sets of tied ranks in
the ith group.
Power- The power-efficiency of Friedman test may be

Efficiency compared to F test as k and n increase.
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KK. Quade Test

The Quade Test, also known as Quade ANOVA Test, is used as an
alternative of the Friedman Two-Way Analysis of Variance by Ranks. As
the Friedman test is a k-sample extension of the sign test, the Quade
test is an extension of the Wilcoxon signed-rank for paired or k related
samples.

In Quade ANOVA test, the observations in each row of a two-way
table are ranked. Then the range of the ranks for each row is found and
the ranges of the rows are ranked. The Quade Test is computed based on
the ranks of the row ranges.

Sample or Treatment

Subjects

2
1 X11 X12 X1k
2 X21 Xa22 X2k
3 X31 X32 X3k
n Xb1 Xb2 Xbk

Sum of Ranks X1 X g Xk
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-1)B

TeSif/ Qz(i_; Rij,i=1,..,n,j=1,..,k the ranks
Variable of the observations
Definition where k= number of

treatments or groups Qi,i=1,..,n,j=1,..,k

(columns) the ranks of the row

n= number of rows ranges

(subjects)

k+1
Sij =@ [Rij —T]
Common Ho:0, =0, = - =0, There is no dif ferences in
Hypothesis Hi:6; # 0;, for at least two themedians across all
of the treatments B S
Asymptotic Qis approximated by F-distribution with
Distributio df=k-1 and (n-1)(k-1) under the null
n/ Large hypothesis of independence
Samples
Power- The power-efficiency of Quade Test is compared to
Efficiency Friedman Two Analysis of Variance by Ranks.

LL. The Page Test for Ordered Alternatives

The Page Test for Ordered Alternatives is an extension of the
Friedman test. It also known as Page’s Trend Test or Page’s L test. It
tests whether the groups (or measures) are the same versus the
alternative that the groups or measures are ordered in a specific
sequence. The a priori order of the groups is required for the test. The
Page test is useful where:

* there are three or more conditions, a number of
subjects (or other randomly sampled entities) are all
observed in each of them, and
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* there is a prediction that the observations will have a
particular order.

Test/
Variable
Definition

Common
Hypothesis

Asymptotic
Distribution/

Large
Samples

Power-
Efficiency

b= the number of blocks,
groups or treatments

K
L=er.j n= the sample size.
=

k= number of
treatments or groups
(columns)

Tyj= Sum of ranks in

column j

Ho:0, =0, = - =0, There is no dif ferences in
Hi:0, <0, < <0, the medians across all

the treatments

nk(k + 1)* Z; is
o= 4 approximately
12 (1 z normally
o2, = - D distributed with
144(k - 1) zero mean and
standard
12L — 3nk(k+1)* |k—1 deviation one.
TR - 1) n

Page test is more powerful than Friedman for
the ability to detect ordered alternatives.

MM.The Chi-square Test for k independent samples

The Chi-square Test for k independent samples is used to test the
significance of differences among k samples for discrete categorical,
nominal, or ordinal measurements. The test is an extension of the chi-
square test for two independent samples.
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Test/
Variable
Definition

Common
Hypothesis

Small
expected
values

Asymptotic
Distribution/

Large
Samples

Power

n = sample size

k=number of
groups/treatments

r=number of categories
of classes for the
variable

Ho : There is independence

between the two groups and

the variable of interest

The chi-square test
assumes a minimum of
frequencies within
each cell.

X? follows chi — square ( x?)

with degree s of
freedom df= (k-1)(r-1)

x;j= observed number of
cases for the category
or class 1 under
treatment j

E;j= number of cases
expected for the
category or class i
under the treatment j

Ho assumes that the
two groups/samples/
treatments are
independent of the
classes of the variable
or that there is no
interaction between the
groups and the variable
of interest

Usually a minimum of 5
subjects in each cell is
expected.

The test is usually the best where it 1s
appropriate. It may not be appropriate for
situations where order is taken into account

NN. Extension of The Median Test

Extension of the Median Test help to assess whether k independent
groups, with or without the same size, have likely been drawn from the
same population or from populations with equal medians. The Median test
is appropriate for ordinal scale measurements. There may also be specific
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instances where even interval measures may not have alternative to the
Median Test, especially when observations are censored.

Observations may be classified as in the following contingency
table:

Group or Sample

Variable
Observations above Nnqq

. ni1 ni
median
Observations below N

. niq Nniq
median

Test/ & i —E 2 x;i= observed number of
. 2 (xl] l]) J
Variable Xe = 5. cases for the category
Definition i=1 j=1 Y or class i under
2 & i 2 treatment j
R
e | Eij E;j= number of cases
expected for the
n = sample size category or class 1
under the treatment j
k=number of L
groups/treatments
Common Ho : There is independence among the k groups and
Hypothesis the variale of interest
Asymptotic X2 follows chi — square ( x?)
Distribution/ with degree s of
Large freedom df= (k-1)
Samples

Power See Median Test
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00O. The Kruskal-Wallis One-Way Analysis of Variance
by Ranks

The Kruskal-Wallis one-way analysis of variance by ranks, named
after American mathematical statistician William Kruskal and
American Statistician-Economist W. Allen Wallis is a non-parametric
method for deciding whether multiple samples originated from different
distributions.

The Kruskal-Wallis method tests the factual null hypothesis that
the populations from which the samples originated have the same median.
It is identical to a one-way analysis of variance with the data replaced by
their ranks. It is also considered as an extension of the Mann-Whitney U
test for three or more groups.

Since it is a non-parametric method, the Kruskal-Wallis test does
not assume a normal population, but assumes that the variables under
study have the same underlying continuous distributions. Hence, the test
requires at least ordinal measurements.

To apply the test, the data are arranged into a two-way table with
each column representing a sample, group or treatment and the rows
being observations. All the observations from each group are combined
and ranked as a series. Each observation is then replaced by its rank
within the group. The Kruskall-Wallis statistic is then computed.

Sample or Treatment

Observation
2

2 X21 X239 X2k
) X31 X32 X3k
n Xp1 Xbp2 Xk

Sum of Ranks X1 X9 X #x
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Test/ KW=[ 4z 9‘=1njf.j2]—3n(k+1) The average ranks of
Variable n(k+1) the combined sample is
Definition k= number of treatments F=(n+1)/2

or groups (columns)

n= number of
observations within each
group

Tyj= Sum of the ranks in
sample or group j

Tyj= Average of the ranks
in sample or group j

Common Ho:0, =0, =-- =0, There is no dif ferences in

Hypothesis Hi:0; #0;, for at least two themedians across all

of the treatments e TGS

Asymptotic KW is approximated by y? with df=k-1

Distribution

/Large

Samples

Correction 12 k ,—_2]_

for Ties KW:[n(k_l_l)Zj:ln]T.] 3n(k+1)
1-[Z0,@° - t)]/(m3 —n)

Power- The power-efficiency of Kruskal-Wallis test may

Efficiency be compared to F test as n increase.

PP. The Jonckheere Test for Ordered Alternatives

The Jockeree test for Ordered Alternatives is an extension of
the Kruskal Wallis test. It tests whether the groups (or measures) are the
same versus the alternative that the groups or measures are ordered in a
specific a priori sequence. The a priori order of the groups is required for
the test.

To apply the test, the data are arranged into a two-way table with
each column representing a sample, group or treatment arranged in the a
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priori hypothetic order and the rows being observations. Consequently,
the groups are ordered from the group 1 with the hypothetically lowest
median to the group k with the largest median.

All the observations from each group are combined and ranked as a
series. The Jonckheere method involves counting the number of times
an observation in the group or sample j is preceded by the observation in
the group or sample j. This count, also known as the Mann-Whitney
count constitutes the basis for the test.

Test/ i b= the number of blocks,
Variable Uij=2#(Xhi,j) groups or treatments
Definition h=1 _ :
n= the sample size.

# (Xpi,j)= number of

times Xp,; from group

1 precedes or is

smaller than any

observation in

group j; with 1<j.

k k-1 k
=S

i<j i=1 j=i+1
Common Ho:0, =0, = =0, There is no dif ferences in
£y E0UOEIE Hi:0; <0, < <0, the medians across all the treatments
Asymptotic n? — ?:171]'2 J*is
Distribution/ ﬂjo approximately
Laroe nf)rmfellly '
Samgples 1 & distributed with
O—ijﬁ n2(2n+3)—an2(2nj+3) zero mean and
j=1 standard
deviation one.
]*_]_“J
9
Power- The power-efficiency of Jonckheere test is around
Efficiency 3/m when compared against an appropriate t or F

test. It is asymptotically similar to Kruskall-
Wallis



AroniSmartLytics Handbook for Applied Statistics 61

QQ. The Cramer Coefficient C

The Cramer Coefficient C, named after the Swiss mathematician
Gabriel Cramer, measures the degree of association or relation between
two sets of attributes or variables, when the variables are measured at
nominal scale. The Cramer Coefficient makes no assumptions regarding
the continuity or the ordering of the variables or the attributes.

The coefficient is measured using a contingency table. The setting
of the contingency table has no influence on the Cramer coefficient. The
data may consist of any number of categories.

The Cramer test assumes that there are two sets of unordered
categorical variables. If the variables are X and Y, the contingency table
may is as follows:

Variable X
Variable Y
X2
Y1 X1 Xi2 X1k X
Y2 X21 X239 X2k X g+
Y3 X31 X32 X3k Xg*
Yr X1 Xre Xrk Xp*

X1 X Xk n
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Test/ X2 L= the minimum of the
Variable C = ——— number of rows or
Definition i ) columns in the
5 v ook @uEi)? contingency table.
X° = i=12j=1 — = B
ij x;j= observed frequency

.2
L2, 2L —n= number for cell(i,j) (attributes i
J of variable X and j of

of treatments or caEiebles Y
groups
E;j= expected frequency
for cell (1,7)
Common Ho:there is no association H1l assumes that there is
Hypothesis between X and Y a relation/association
among the two variables
in the population
Asymptotic C is approximated by x2

Distribution/ with df=(r-1)(k-1)

Large

Samples

Power- Cramer Cis attractive for its relax assumptions
Efficiency but may be not powerful in some cases.

RR. The Phi Coefficientr¢ for 2x2 Tables

The Phi Coefficientr, measures the extent of association or
relation between two sets of variables measured on the nominal scale.
The two variables may only take two values each. It is similar to Cramer’s
coefficient C. Every subject in each sample may fall in one or the other
class based on the observation value.

Observations may be classified as in the following contingency
table:
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Variable Y
Variable X Combined Frequency
0 A B A+B
1 C D C+D

Total A+C B+D n

The test may be one or two-tailed.

Test/ A, B, C, D= number of
Variable |AD — BC| subjects in one category
Definition T @rBCID@A+O®B+Dp °f X and¥
n.2 X2 is distributed as Chi-
X2 = n(lAD — BC| - 3) square with df=1;

" (A+B)(C+D)(A+C)(B+D)
Common Ho : the variables are not related
Hypothesis
Asymptotic
Distribution/ The test may be estimated by a chi-square for
Large large samples and Fisher for small samples.
Samples
Power The test is similar to Cramer’s C

SS. The Spearman Rank-Order Correlation
Coefficient rg

The Spearman's Rank-order correlation coefficient or
Spearman’s rho, named after the British psychologist Charles
Spearman and often denoted by the Greek letter o (rho) or as ry, is a
measure of statistical dependence or association between two variables.

The two variables must be measured at least at the ordinal scale so
that subjects may be ranked into two ordered series. If there are no
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repeated data values, a perfect Spearman correlation of +1 or -1 occurs
when each of the variables is a perfect monotone function of the other.

Test/ Variable di = Xi-Yi, the
Definition o S92 =3 d difference of the ranks

between the two

Ts
2y x2Y y? variables

6yd’ n = sample size.
n=1-—=
nd—n
Common Ho : the variables are not related
Hypothesis
Asymptotic For large samples, z=rVn—1is approximately
Distribution/ normally distributed with mean 0 and standard

deviation 1.

Large Samples

Power- The Spearman rank-order correlation
efficiency coefficient has relatively high efficiency when
compared to the most powerful parametric

test, the Pearson product-moment correlation
Xxy

V2 x2 Y y?

coefficient r =

TT. The Kendall Rank-Order Correlation Coefficient t

The Kendall Rank-Order correlation coefficient, commonly
referred to as Kendall's tau (T) coefficient and named after the
British statistician Sir Maurice George Kendall, is a statistic used to
assess the association between two measured quantities.

Specifically, it is a measure of rank correlation; that is, the
similarity of the orderings of the data when ranked by each of the
quantities.
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Test/ __ #agreements—# disagreements n = sample size.
Variable total number of pairs
Definition 25

Tam=1)

6%d”

rS:l_n3—n
Common Ho : the variables are not related
Hypothesis
Asymptotic Mean uy =0
Distribution/ 2 _ 2(2n+5)

Variance: of =
In(n-1)

Large Samples
Z=T_#T
or
distribution with mean 0 and standard

deviation 1

approximately follows normal

Power- The Kendall 1 and Spearman rank-order
efficiency correlation coefficient have similar power-
efficiency

UU. The Kendall Partial Rank-Order Correlation
Coefficient T,,,

The Kendall Partial Rank-Order correlation coefficient handles
situations where a third variable Z is the source of associations between
two variables X and Y.

The effects of variation due to the third variable are eliminated by
keeping the variable constant while assessing the correlation between the
two variables X and Y.

Specifically, Z scores are ordered, and the agreements between Z
and the other variables are assessed.
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Y pair
S; Sign Combined
ign agrees .
with the 7 disagrees Frequency
. with the Z
sign .
sign
Sign agrees with the Z sign A B A+B
Sign disagrees with the Z sign C D C+D

Total

Test/ Variable T = Tey = Taalys n = sample
Definition " J(l_Tx,zz)(l_Tyzz) size.

Common Ho : the variables are not related

Hypothesis

Asymptotic Mean uy =0

Distribution/ 2 _ 2(2n+5)

Variance: OTxy,z = an(n—-1)
Large Samples

7= 3Tyy,Zy/n(n—1)

J2(2n+5)
distribution with mean 0 and standard
deviation 1

approximately follows normal

Power- Not clear to assess
efficiency

VV. The Kendall Coefficient of Concordance W

Kendall's W, also known as Kendall's coefficient of
concordance is a normalization of the statistic of the Friedman test,
and can be used for assessing agreement or correlation among multiple
independent measures.
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Kendall's W ranges from O (no agreement) to 1 (complete
agreement).

Suppose, for instance, that a number of raters have been asked to
rank subjects, from most important to least important. Kendall's W can
be calculated from these ranks:

e If the test statistic W is 1, then all the raters have been
unanimous, and each rater has assigned the same order to the
list of objects or subjects.

e If W is O, then there is no overall trend of agreement among
the raters, and their responses may be regarded as essentially
random. Intermediate values of W indicate a greater or lesser
degree of unanimity among the various responses.

While tests using the standard Pearson correlation coefficient
assume normally distributed values and compare two sequences of
outcomes at a time, Kendall's W makes no assumptions regarding the
nature of the probability distribution and can handle any number of
distinct outcomes.

W is linearly related to the mean value of the Spearman's rank
correlation coefficients between all pairs of the rankings over which it is
calculated.

Subject

1 Ri: Riz Rix
2 Ra: Rao Rax
3 Rs1 Rsoe Rsx

k Rx1 Rxo Ryx
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Test/
Variable
Definition

Common
Hypothesis

Asymptotic
Distribution/
Large

Samples

Correction
for Ties

Power-
efficiency

kw1
average(ry) = =1
3R, - R)?
T nn?-1)/12

_ 1231 R*-3n(n+1)?

nn?-1)

Ho
the variables are not relate

k = number of sets of
rankings, i.e., raters

n=number of subjects

R, average rank for
subject 1

R average or grand mean
of all ranks

X2 =k(n-1)W approximately follows chi-
square distribution with df = n-1.

w

_ 1231 Ri*-3k®n(n+1)?

k2n(n?-1)-kXT;

. where the correction factor:

’1"]-=Z‘f="1(ti3—ti), t; is the size of the jth set of
tied ranks in the ith group and g;= the number
of sets of tied ranks in the ith group

Not clear to assess but efficiency increases
with the sample size.
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WW.The Kendall Coefficient of Agreement u for
Paired Comparisons or Rankings

Kendall's W tests the agreement or correlation among multiple
independent measures. The concept is based on ratings, with a number of
raters ranking subjects, from most important to least important.

In some experiments, raters are not asked to rank, but to indicate
their preferences for one of a pair of two objects presented at
the same time. Each object is usually paired with all other objects.
Such experiment is known as a paired comparison. The Kendall
Coefficient of Agreement u is suited for such cases.

All the preferences from all the raters are combined in a preference
matrix as follows:

Raters/Judges

1 - X12 X1n
2 X21 X292 X2n
3 X31 - X 3n
n Xk1 X k2 -

With n object, the possible number of pairs is:(g)z(n)(n—l)/Z. With k

raters, in case of complete agreement (n)(n—1)/2 cells will have frequencies
equal to k and the remaining =®m)(n—1)/2 will have frequency equal to zero.
If there is complete agreement, u will be equal to 1, whereas u=0 in case
of complete lack of agreement.

Kendall’s u has advantage over Kendall’s W in the sense that it
averages all the rankings for all the raters.
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Test/ noym (x"f) k = number of raters
q e e & -1

Variable “= (k)(n) n=number of subjects

Definition 2/\2

x;j: frequencies

Y q corresponding to the
agreement between
subject 1 and j

_ 8 )% a?j‘k )%
k(k—-1)n(n-1)

Common Ho : thereis no agreement
Hypothesis among the raters
Asymptotic X2 =(721) [1+u(k—1)] approximately follows

Distribution/ ) i i i i n
chi-square distribution with df =(2)= n(n-

Large Samples 1y/2.

Test with . _ 6(2n+5)(’2‘)(’2‘)

2(2n+5)3(2)(’2()
Ranks T (k-2)(2n2+6n+7)

(k—2)2(2n2+6n+7)>2
the number of the degrees of freedom and
needs to be rounded when not an integer.

lul+ f where f=

Power- Kendall’s u is relatively close to the Chi-
efficiency square Goodness of Fit test.

XX. The Correlation between Several Judges and a
Criterion Ranking Tec

The Spearman rank-order correlation coefficient ry and the
Kendall rank-order correlation coefficient T assess the agreement
between two rankers, by providing an index of correlation. Kendal
coefficient of concordance W and Kendall coefficient of agreement u help
to assess the agreement and concordance among the raters.

In some instances, experimenters are interested in agreement or
concordance between the ratings and a specified criterion. The
Criterion Ranking test Tc is suited for these instances where the focus
on the correlation between k sets of rankings and a criterion ranking.
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In the preference matrix, objects are listed in the order of the
criterion ranking. Then, the frequencies are summed separately, for the
upper triangle of the matrix as Y x;on the one hand and the lower
triangle on the other as X x;.

Test/ 27 Xij - Y- Xij) k = number of raters
Variable I.= kn(n — 1) -1 n=number of subjects
Definition

;i- frequencies
4 + .. xl}
=ﬁ- corresponding to the
kn(n-1) agreement between
437 x4 subject 1 and j
. _kn(n—l)-
Common Ho : thereis no agreement
Hypothesis among the raters
Asymptotic To test the hypothesis Ho: Tc=0 vs H1: Tc¢>0;
Distribution/ use the statistic:
Large Samples 7= [Tci kn(121—1)]3\/7vzk(2(r:51)) which is approximately

distributed with mean zero and standard
deviation one.
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YY. The Cohen’s Kappa Statistic k

The Cohen’s Kappa statistic, named after the US psychologist
John Cohen, tests the agreement or concordances among the raters
when the measurements are nominal (categorical).

Specifically, the test is a measure of inter-rater agreement for
categorical items. The ranking matrix may look like as follows:

Category

1 X11 X19 X1k X1*

2 X91 X229 X2k X 2*

3 X31 X3k X 3%

n Xn]_ Xn2 Xnk Xl’l*
Total X *q X#9 X *k

Each of the n objects is assigned to one of the m categories by
each of k raters. Xij is the number of the raters that assign object i to
category j. If x*j is the number of ratings that assign the objects to
category j.

If the raters are in agreement on a category for a given object, the
frequency for the object in the category is k, other categories having 0O
frequency. The kappa coefficient of agreement is the ratio of the
proportion of times that the raters agree to the maximum proportion of
times.
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Test/ K_P(A)—P(E) k = number of raters
Var.ia!)l.e L =12 n=number of subjects
Definition 5 R ,

P(E) = XL pi= ﬁl(j) x;j: frequencies

corresponding to the

P(A)m number of raters
_EZX' that assign object 1
T n b in category j
=1
1 n mo, P(A)= proportion of
= nk(k—l)zi=1zj=1xij times that k raters
agree
P(E) = proportion of
times that the k
raters may agree du
chance.
Common Ho : thereis no agreement among the raters
Hypothesis
Asymptotic To test Ho: k=0 against H1:x>0;
Distribution Var(x)= [ 2 ][P(E)—(2k—3)[P(E)]2+2k(k—2)Z}-’Llp?]
/ artlo= [e-on
Large Z=xl+var(k) is approximately distributed with
Samples mean zero and standard deviation one.
Power- Usually more robust measure than simple
efficiency percent agreement calculation

Z7. The Gamma Statistic T

The Gamma statistic tests the agreement or concordances between
two variables measured at the ordinal scale. The approach in applying the
Gamma Statistic is similar to Kandall’s tau.

The categories for the two variables may consist of any number. The
contingency table may look as follows:
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Ordinal
Variable
B

B2
B3
Br
Total
Test/
Variable

Definition

Common
Hypothesis

Asymptotic
Distribution/

Large Samples
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X31

Xrl

X*1

Ordinal Variable A

A2

X22 X2k X2%*
- X3k X3*
X2 - Xn*
X *9 X *k n
__ #agreements—# disagreements n = sample size.

# agreements+# disagreements

#agreements
r—1k-1

r k
DX NI
=1 j=1 p=i+1 q=j+1

#disagreements
r—1 k

r j—1
=220 D
p=i+1 q=1

i=1 j=2
Ho : the variables are independent

Mean: y=0

n(1-62)
#agreements+#disagreements

Variance: of <

approximately

7 = 'y |#agreements+#disagreements

or n(1-G2)
follows normal distribution with mean 0
and standard deviation 1
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AAA. The Lambda Statistic 2,

The Lambda statistic A, developed by the American
mathematical statisticians William Henry Kruskal and Leo A.
Goodman is a measure of proportional reduction in error in cross
tabulation analysis of two variables.

The test makes a few assumptions regarding the scale of the
variables, except the fact that the variables are nominal, but not
ordered. For any sample with a nominal independent variable and
dependent variable (or ones that can be treated nominally), it indicates
the extent to which one variable can be predicted by another known
variable.

The contingency table may look like as follows:

Nominal Variable A

Nominal
Variable
B
B1 X11 X12 X1k X1*
B2 X921 X292 X 2k X 2%
B3 X31 X3k X3*
BI' Xrl sz Xn*
Total X *1 X*9 X *k n

Hence, the test is a measure of the reduction in the error in
predicting one variable by another known variable
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Test/
Variable
Definition

Common
Hypothesis

Asymptotic
Distribution/

Large Samples

_ Zﬁ-c:lmax(x*j)—max(xi*) n = sample size.

Ap=

n—max (Xi)

max(x,;): largest frequency
in column j
max(x;,): largest frequency

in row 1

Ho : the variables are independent

Mean: 4,

Variance:
(n—Zﬁl max(x*j))(Z;-Ll max(x, j)+max(x;,)— 2%’ max(x*j))

[n-max(x;,)]3

oF =

7=

distribution with mean 0 and standard
deviation 1

F;Ab approximately follows normal

BBB. Asymmetrical Association For Ordered
Variables: Somers’s dg,

The Somers’s dg, statistic, named after the American sociologist
Robert H. Somers is an asymmetric measure of association between two

variables.

Given a predictor variable A and an outcome variable B, dg, may be
estimated as a measure of the effect of B on A, or as a performance
indicator of B as a predictor of A.

To compute the statistic dg, determine the frequencies above to the
left, M; and above to the right, M;; of the cell (i,j) and the frequencies
below to the left, N; and below to the right, Nif of the cell (i,j).

i-1J-1

M;; = 2 Xpq

p=1g=1

~.



AroniSmartLytics Handbook for Applied Statistics

i-1 k
+ —
Mi= 2, D,
p=1q=j+1

The contingency table may look like as follows:

Nominal
Variable
B

Test/
Variable
Definition

Common
Hypothesis

Asymptotic
Distribution/

Large Samples

Nominal Variable A

A2

dg,= n = sample size.

# agreements—# disagreements

#pairs not tied on variable A

_#agreements—# disagreements

2

r
n2_2i=1 xi*

Ho : the variables are independent

Mean: dgy =0

r oyn 4+t
4= Xjoqnij (Nj+M{— Nij—

Vo33

M;;)?

Variance: of =

7= Lapproximately follows normal

Jvar(dga)

distribution with mean 0 and standard
deviation 1

77
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VIII. Other Key Tests

A. Ansari-Bradley Test

Some research problems may need to test the spreads for two
populations with assumed equal central tendency. In the parametric case,
the F-Test for equality of variances will be used.

In the non-parametric situations, the Ansari-Bradley test is used
to test the differences in spread between two populations when the
population medians are assumed equal and the samples from two
populations are independent. The measures are assumed continuous.

Ansari-Bradley scores are similar to Siegel-Tukey scores, with the
difference that Ansari-Bradley assigns the same scores to extreme ranks.

Approach:

 Stepl: Center around the median the observations within
each of the two samples. That is if X = {X1, X2, ... Xn1} is the
set of observations in Sample 1T with median y1 and Y={Y1, Y2,
. Yn2) is the set of observations in Sample 2, with median p2,
then centered observations are {X1-pyl1, X2-ul1, ....Xn1 -u1}
and {Y1-py2, Y2-u2, ....Yn2 -u2}.

 Step 2: Combine the two location (median)-adjusted samples
and list in increasing order. Assume n= nl1 + n2.
Step 3: Assign the score (rank) i to the I th and (n + 1 - i)th
ordered values. In case of ties, assign average scores. Thus,
scores increase from both ends towards the center of the
ordered sample.

Ansari-Bradley scores are computed as follows, with Rj, the

rank of observation j, and a(Rj), the score of observation j:

n+1 n+1
a(R)) =" = [R =27

» Step 4: Ansari-Bradley statistic W is the sum of the
scores(ranks).

e Step 5: Look up the critical value in Ansari-Bradley tables in
n<20, otherwise use normal approximation.

* From the table, given the significance level c, the upper
critical value of W is the smallest x in the table such that P(W
> x) £ c¢c and the lower critical value of W is x-1, such that
P(W 2x)>1-c.

For large samples, approximate the standard normal distribution Z
with W*, and use the normal tables to fin p-value.
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If n=n1+n2 is even:
B W —[ni(ny +n, + 2)/4]
\/nl(nl +ny + 2)ny(ng +n, — 2)/[48(ny +ny — 1)]

If n=n1+n2 is odd:

W*

n,(ny +n, + 2)2]
4(n; +n,)

T Vnu(m F DG (n + )2/ [48(n, + )7

w—|

W*

B. Conover’s Squared Ranks Test for Equality of
Variance

The assumptions of the Conover Test also known as Conover
Squared Ranks Test for Variances, are similar to those for Ansari-
Bradley test. It tests whether the samples come from populations with equal
dispersion.

The Conover Test uses Conover scores calculated as the squared ranks
of the absolute deviations from the sample means. For each observation 1,
the absolute deviation from the mean is computed as:

Ui = [Xigy = X;

where Xi(j) is the value of observation i , within sample j and X] is the
mean of sample j.

The values Ui are then ranked, assigning average ranks to ties.

The Conover score, Score; = (Rank(U;))?

C. Normal Scores

Normal scores, also known as Van der Waerden are the quantiles of a
standard normal distribution. Hence they are also known as quantile normal
scores. These scores are powerful for normal distributions.

Van der Waerden Normal scores are computed as:

a(Rj) = ¢ (nll-elf 1)

where @ is the cumulative distribution function of a standard normal
distribution.
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D. Mood Scores

Mood scores are the square of the difference between the observation rank
and the average rank. Mood scores are computed as follows:

n+1

a(R) = (R; = T)Z

E. Klotz Scores

Klotz Scores are the squares of the Normal or Van der Waerden scores.

2

a(Rj) = ¢ (nll--elf 1)
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IX. Non Parametric Survival Tests: Tarone-
Ware, Log-Rank and Gehan-Breslow Test

The Log-Rank test, also known as the Mantel log-rank test, Cox Mantel
log-rank test named after the English statistician, Sir David Roxbee Cox or
the Mantel- Haenszel test, named after the American statisticians Nathan
Mantel and William Haenszel, is commonly used in testing and comparing
two survival distributions.

It is applicable to data where there is progressive censoring. The test
assigns equal weights to early and late failure. Under the null hypothesis,
the hazard functions for the two groups are parallel.

Tarone-Ware and Gehan-Breslow tests, named after the American and
English statisticians Edmund A. Gehan, Norman E. Breslow are used to
compare two survival distribution or functions.
They are versions of the log ranks, after assigning the weight to the
observed minus the expected score at any given time,

* The Log-Rank uses the weight of 1.0 for each observation.

* Gehan-Breslow, sometimes known as Wilcoxon uses the weight

corresponding to the number of observations at risk. T) .

* The Tarone-Ware test uses weights corresponding to the square root
of the number of observations with the lower rank or observations at

risk, \/?]

e The Cox Mantel is also similar to the log-rank test

e The Peto-Peto modification of the Gehan-Wilcoxon test, named after
the British statisticians Sir Richard Peto and Julian Peto is similar to
Breslow’s test. It is more suited for situations where the hazard ratio
between the groups is not constant. It is considered more powerful
than Gehan-Breslow’s test when the sample sizes are small.

The null hypothesis is assumes that the populations have the same survival
distributions, whereas the alternative assumes different survival
distributions

1. Log-Rank Test
. The test compares two 2 groups, but may be extended to more groups
J Approach: Find the expected number of failures in group 2 and
compare with the observed number of failures.

(E2—07)

2
= Var(5,-0,) follows a chi — square with 1 degree of freedom (x%)
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ryroidi(rj=d)) | . ryjd;
: 2] -t ) s the variance and E, = _—
rj(rj—l) T

where

withT’lj = number of observations at risk at time j in group 1;
Toj = number of observations at risk at time j in group O;

dj = combined number of failures/events at time j;

T = combined number of observations at risk at time j;

and 0,= total number of failures in group 2, E; = expected number failures

in group 2.

For extension to more than two groups, g > 2 groups possible, the
covariance of the total number of failures and the expected number of
failures is used:

, 2
=X Var(E l()h) follows a chi — square with g — 1 degree of freedom (x?)

2. Stratified Log-Rank Test

* The test is an extension of the Log-Rank Test

e Allows controlling for an additional variable, known as strata, hence
“stratified”

* Approach: Split data into strata, depending on value of stratified
variable

+ Calculate E; — 0, scores within strata
« Sum E, — 0, cross strata.

3. Tarone-Ware, Gehan-Breslow or Generalized Wilcoxon
Test

°* The test is an extension of the Log-Rank Test

e Allows weights on observations with a Weights variable, while
controlling or not for strata

. It is more powerful than the log-rank test when the hazard functions
are not parallel and in case of little censoring. When censoring is
pervasive, it has low power when censoring. It gives more weight to
early failures.

2 [Zf=1 Wi(d1j j*di/m )]

tw — 2
k Wi leroj'dj(rj d;)

N A )
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